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We present an-adaptive finite element method for solving time dependent partial
differential equations. A moving mesh partial differential equation, or MMPDE,
is used to move the (unstructured) mesh in time. A key to the application of the
MMPDE to unstructured mesh movement is to define a computational domain and
then compute the corresponding computational mesh as the image of an initial mesh
on the given physical domain. The finite element discretization of physical PDEs
on moving meshes is addressed. Numerical results are presented to demonstrate the
capability of the mesh movement strategy andrttaelaptive finite element method.
A fully developedr -adaptive finite element method can be expected to be ideally
suited to complement the currently poputap finite element methods and to provide
increased reliability and efficiency for mesh adaptatior) 1999 Academic Press

Key Words:moving mesh method; adaptive finite element method; unstructured
mesh adaptation.

1. INTRODUCTION

As is well known, adaptive techniques can greatly improve the accuracy and efficienc
finite element methods (FEMSs) for solving partial differential equations (PDES) by conce
trating the elements in regions where the solution changes rapidly. Adaptivity is particule
advantageous when the region requiring high resolution consists of only a small fractiol
the entire domain. There are three main types of adaptive techniques for the finite eler
method: (i) theh-method, which refines and coarsens the mesh locally according to cert
error indicators, (ii) thep-method, which selects the polynomial degree used in the fini
element approximation in each element according to the smoothness of the solutions,
(iii) the r-method, ormoving mesh methoavhich relocates the element vertices (mest
points) to concentrate them in the desired regions.

There have been extensive studies oftiteand p methods, as well as their combination,
the h-p method, and they have proven to be successful for a wide variety of problems
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computational mechanics and fluid dynamics. Tkraethod has been less popular for the
finite element community. The main difficulty seems to be the lack of a reliable, efficie!
and general procedure to determine the mesh movement. Nevertheless)eteod offers
features distinct from those of theand p methods, viz., the mesh changes continuously
making it easier to incorporate a time integrator, and the data structure is simpler, makir
easier to implement. These attractive features have of course been utilized in previous :
ies. Miller [22] first introduced moving FEMs, and for his approach both the moving me:
and the numerical approximation of the physical solution are determined by minimizi
the residual of the PDEs over an enlarged trial subspace composed of the usual basis
tions and their derivatives. For steady state problems or problems leading to an equilibr
state, this method can result in optimal solutions in certain norms for all possible choi
of the meshes with the connectivity fixed [21]. For some nonlinear convection diffusi
problems, this moving FEM has produced quite accurate solutions with very small numtk
of elements [8, 22]. However, since the minimization procedure can become degene
its successful application requires the proper modulation of some penalty terms. Care 1
also be taken to prevent mesh tangling [8]. In recent work, these deficiencies are reme
to some extent by the local refinement technique. Similar ideas for determining the m
movement by minimizing the residuals are utilized by Baines [2].

There are several theoretical studies of the FEM for nonfixed meshes. For instal
Dupont [10] obtained error estimates for the FEM using meshes changing with time (c
tinuously or discontinuously). Bank and Santos [3] used the framework of space-time fir
element approximations with changing meshes and obtained a symmetric error estin
But in these analyses, no particular technique for moving the meshes is advocated.

Moving mesh methods have attracted considerable attention in the mesh gener:
community, especially for the solution of aerodynamics problems using the finite diffe
ence method and structured grids. Several techniques for creating and relocating the me
have been advocated, perhaps most notably the method based upon solving elliptics F
[4,5, 26]. In recent work of Huang and Russell [17, 18], a moving mesh technique
developed which determines the mesh movement by solving a system of parabolic e
tions called the moving mesh partial differential equations (MMPDES). The basic idea
the approach is to formulate the MMPDE as the gradient flow equation of a functior
which measures the approximation difficulty of the physical solution. Mesh adaptation
the underlying physical solution, mesh alignment to some known vector fields, and m
orthogonality control are all taken into account in the definition of the mesh generati
functional. For structured grids, the finite difference discretization of the MMPDE pr
duces quite satisfactory meshes which move smoothly in time and are concentrate
regions where the solution changes rapidly.

In this paper, we describe aradaptive finite element method based upon the MMPDE
developedin[17, 18]. The key to this application to unstructured mesh movementis to de
and compute the computational domain and computational mesh (see Section 4). Ha
obtained the computational mesh, the adaptive finite element method involves solving
MMPDE (based upon the numerical solution at the current time step) to obtain a m
at the next time level and then solving the physical PDE to produce the solution at
new time level. To minimize the overhead involved in moving the mesh and to avoid t
possible introduction of singularity into the mesh by the numerical scheme, we use a fi
element method with linear basis functions for solving the MMPDE. The use of relative
crude approximations to determine the mesh points is somewhat justified by a theore
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analysis like that of BalsKa and Rheinboldt [1]. Further, the finite element discretizatio
of the MMPDE enables us to use unstructured meshes, which is common in finite elen
computations. With the mesh points computed from the MMPDE at the new time level,
physical PDE can be discretized by the method of lines (MOL), i.e., by first discretizil
the physical PDE in the spatial direction with FEM to obtain an ODE system and th
integrating the system to obtain the numerical solution at the new time level.

An outline of the paper is as follows: In Section 2 we present a brief description
the formulation of the MMPDESs. A number of practical issues for the unstructured me
generation with MMPDEs, e.g., the choice of the computational domain and corresponc
computational meshes, are addressed in Section 3. Some numerical results are alsc
sented in this section to demonstrate the ability of the mesh movement strategy. In Secti
we describe how to discretize a physical PDE by the finite element method on (unsti
tured) moving meshes. In Section 5 we present several numerical examples to illusi
the performance of the moving mesh technique and tadaptive finite element method.
Finally, Section 6 contains the conclusions.

2. FORMULATION OF MOVING MESH PDEs

In this section we briefly describe the moving mesh PDE approach introduced in [
for structured mesh movement. This MMPDE for a coordinate transformation between
physical and computational domains is based upon the gradient flow equation of a functi
which measures the difficulty of spatial approximation of the physical problem.

We begin by describing a general functional form for steady state mesh generation
adaptation. Lef2 c R? be an open domain where the physical problem is defined, ai
let Q.  R? be an artificially chosen auxiliary domain which is used to compute adapti
meshes ir2. HereafterQ2 and Q. are referred to as the physical and computational dc
mains, respectively, and the corresponding spatial coordinates are dengtedyy) and
&= (&, n). To construct a mesh of, it suffices to define a one-to-one mappiag X (&)
from Q. onto (2, or equivalently its inverse mappigg= £(x) from Q onto 2., and then to
define the mesh oft as the image of the mesh & under the mapping(&).

Awidely used approach is to defigéx) as the minimizer of a certain quadratic functional
I [£] which addresses the desired mesh adaptation properties [4, 26, 28]. Gengghily,
of the form

le) = 5 [ (7676740 + VTG i o )
Q

whereV = (3/dx, 3/3y)" and G is a 2x 2 symmetric positive definite matrix, usually
referred to as thenonitor function There are a number of practical considerations whe
definingG, e.g., the mesh should concentrate at certain corners and edges af certain
regions, where high resolution of the numerical solution is required, and the mesh
be required to align to some directions. To defldesatisfying these requirements, it is
convenient to use its eigen-decomposition form

G= )L]_V]_VI + )»2V2V12—, (2)

wherevy, v, are normalized eigenvectors aig A, the corresponding eigenvalues. It is
generally difficult to predict the precise mesh behavior from a given monitor function. O
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previous study [6] reveals that if the mesh@gis uniformly distributed, then the adaptive
mesh generated by minimizing&] tends to be concentrated in regions whageand i,
change significantly. A general guideline is also given in [6] for choosing the monit
function. For instance, a typical choice is

vi = Vu/|Vul, Vo=V,
M =V1+ |VU|2

whenitis desired to have the mesh dense in regions where the physical se{Mjiohanges
rapidly. The eigenvalug, can generally be chosen as a function.gf In particular, the
choice ofa, = 11, whichleads t@& = A, |, corresponds to Winslow’s well-known functional
[29]; the choicer, = 1/41, which givesG = M//det(M), whereM =1 + (Vu)(Vu)T,
corresponds to the method based upon harmonic mapping [11], while the,cadegives
G = (1+ (Vu)(Vu)"¥2, which is a generalization of the arc-length monitor function use:
in one dimension [19]. The effects of these different types of monitor functions are stud
in [6].

Given G, the mapping (x) is determined from the Euler—Lagrange equation

®3)

V(Glve) = 0. 4)

In actual computation, we solve fa(¢), the inverse mapping &(x), because it directly
defines the mesh aR. Using the coordinate transformation relations

1 Yn 1 —Ye
Vé = — Vnp=— 5
e=3(2) w=3(3F): ®
whereJ =Xy, — Yz X, is the Jacobian of(£), (4) can be expressed as
K X; Gx, 9 x; Gx, _0
e\ Jg an\ Jg ’

_i(x;Gxg +i X{ Gx¢ _o,
& Jg an Jg
whereg =det(G).

We consider now mesh movement for time dependent problems. To formulate the ir
equation which moves the mesh smoothly while adapting to the physical salutiorix, t)
at all time levels, Huang and Russell [17, 18] use the gradient flow equation of functio
I [£]. More specifically, the MMPDE is defined for the mappifig- £(x, t) as

(6)

% _ L vGive, ™
at ./0
wheret > 0 is a time smoothing parameter. For smalthe mesh adapts more quickly to
the monitor function at each time level, and for largde mesh moves more smoothly with
time.
Once again it is more convenient to work wit€, t). Noting that

of
ot

_ of X

T oAt

fixed & ot

fixed x
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for an arbitrary functionf , we can rewrite (7) as
X X [ (% GX, 3 (XIGx,
at  tlyglag\ Jg an\ Jg
9 [ XTGx 9 /XIGX
ST A o b I o b B G ®)
tJ/gl 9\ Jg an\ Jg
This is our basic moving mesh PDE. By solving it numerically, a mesh can be obtair

which adapts to the monitor function from one time level to the next. Equation (8) ha:
more convenient explicit parabolic form,

X
E = AXEE =+ BXSW + CXn77 + DXE + EXn, (9)

where the coefficients are given as

1

A= W{—(XZGX,])X;X;SJr IXyX) G + (X] GX¢ )X, X S},
B= W{(szxn)xgng— IXeX] G + (x{GX,)X:X] S}

+ Tlgm{—(ngxg)xnx;S— IX X G — (X} GX¢ )X, X{ S}, .
C= Tlga/z{(xg(}xg)xﬂx;S—ir IXeX] G — (X{GX, )X X[ S}, 4o

1 L0 (G L0 (G
o= gz 3 (g )+ 45, (3 )}
1 Jd (G Jd (G
E=__— T~ (= T =
rJZgl/Z{X”as<g>XE X$8n<g>xé}’

andS=[ ° 1I.

To completely specify the coordinate transformation, the MMPDE must be supplemen
with suitable boundary conditions. This is trivial in the case where the grid points ¢
held fixed on the boundary. To let the grids move on the boundary, a natural choice i
impose homogeneous Neumann boundary conditions; however, our numerical experi
has shown that this choice is not very robust and often produces a nonsmooth grid. We ins
take Dirichlet boundary conditions determined from the solution of a one-dimensiol
MMPDE. More precisely, given a boundary segmEerdf 02, let I’ be the corresponding
boundary segment @f2;. Denoting bys the arc-length from a point o to one of its end
points and by the arc-length from a point o, to one of its end points, we can identify
with | = (0, £) andI'c with I = (0, £.). Then the mesh on is determined by the boundary
definition and the solution(¢, t) of the one-dimensional MMPDE,

as 10 1
at " 7oz \M(s. 0)(3s/37)
S(O) = O’ S(EC) = Zs

) =0, ¢€(0 L),
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wherer, is a parameter determining the strength of the temporal smoothing for the mov
grids on boundaries. In general it may take the same value as itng€8). M is a one-
dimensional arc-length monitor function chosen as the projection of the two-dimensio
monitor functionG along the boundary; i.e.,$fis the unit tangent vector along the boundary
thenM (¢, t) =s'Gs. This is similar to MMPDES5 in [19].

3. IMPLEMENTATION OF UNSTRUCTURED MESH MOVEMENT

We have seen in the previous section that the MMPDE is formulated in terms of the
ordinate transformatiox(£). As is the case for other coordinate transformation approach
for mesh generation and adaptation, the definition of a computational détpaimd a cor-
responding computational mest{ must be done initially. However, there is an essentia
difference in how this is done in the cases of structured and unstructured grids.

For the case of structured grids, itis common practice to ch@gse a simple geometry,
typically a square, and to chooS to be a uniform mesh ofe.. The adaptive mesh on
the physical domai2 is then determined by solving the mesh equation (6) or (9). Du
to the simple structure aR; and ", this approach is too restrictive when the shape o
Q is relatively complicated. This limitation can sometimes be dealt with by a multibloc
approach, wher& is broken up into a number of simply shaped subregions,&ni
mapped onto each of these subregions individually, e.g., as in [26].

In contrast, for the unstructured grid case, it is typical to generate first an initial me
QN (0) over the physical domaif, by one of various mesh generators such as a Delaun:
triangulation in the finite element context. (The shap&adfself poses little difficulty in
generating2"(0) compatible with the domain geometry. Indeed, one of the major reaso
for the wide-spread use of FEM is their ability to deal with complicated solution domail
in such a way.) The computational domatg and computational mesif! should then be
defined and computed in accordance vitland 2" (0).

The choice of2. can be quite arbitrary. The basic guideline is to cha@sesuch that
(6) defines a one-to-one mapping betweeand2.. Unfortunately, for a general monitor
functionG, there are no obvious conditions £ which guarantee that a unique solution to
(6) exists and defines a one-to-one mapping betwezand2.. An exceptional case is for
a harmonic mapping. Then §i. is convex and the mapping froff2 to 2. is smooth, it
follows from the theory of harmonic mappings that the solution to (6) is unique and defir
a one-to-one mapping betwenandQ. [11, 16]. Lack of convexity of2. may resultin a
degenerate mapping and mesh crossing. Thus, we recommet thataken as a convex
domain. IfQ2 is convex itself, one may simply take, = .

OnceQ is selected, one way to define @i to have the same mesh topologys¥0)
is to first specify a correspondence between the boundiéfiesdo 2. by a mappingp (x)
and then leR2! be the image of2"(0) under the mapping(x) satisfying

V2¢ = 0, in Q, 1)
£(X) = ¢(X), 0NI.

The above Laplace equations can be solved numerically by, e.g., the finite element met
OnceQL1 is obtained, the initial adaptive mest'(0) can be computed as the numerical
solution of (6) onQ".
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FIG. 1. Meshes are plotted for Example 3.1: (a) initial mezh0) on physical domain; (b) computational

meshQ" obtained by solving (11); (c) initial adaptive me&fi(0) obtained by solving (6).

ExampPLE 3.1. The above mesh generation procedure is applied on the L-shape don
(0, )% (0, Hu (0, $)x (2, 1). Theinitial mes2"(0) is as shown in Fig. 1& is chosen to
be a hexagon and the boundary correspondence is defined using piecewise linear func
The obtained computational me€fi is shown in Fig. 1b. Note that the mesh topologies ir

Q and . are identical. Finally, we solve (6) with the artificially chosen monitor functior
G = (1+10secli50(x+y — )| to get an initial adaptive mesh"(0) as shown in Fig. 1c.

Numerical solution of the MMPDE involves discretization in both the spatial and temp
ral directions. In the spatial direction, we use a standard linear finite element method; \
we seek the approximate solution in the space of continuous piecewise linear polynon

S'(Q.). For discretization in the temporal direction, we use the backward Euler formula
the time levels =ty <t; <--- <ty <---. To avoid solving the nonlinear algebraic equa-

tions, the MMPDE (9) is linearized with the coefficierds B, C, D, andE calculated at

timet,. The full discretization of the MMPDE is then given as
[(Xe (ta+a), (B(t))TV) )

Findx(th,1) € S"(%) such that
1
2

(Xe(tn), V) + (Xe (t2)s (At V), ) + (X (thsn), (Ct)TV), ) +

+ (% (trs1), (Bt V), )] = (D(tn)Xe (ta1) + E(tn)X, (tap1), V) =0 W € F(Q),
(12)

where(., -) stands for the inner productirf (), Q(Qc) is the subspace &' ($2¢) consist-
ing of functions which vanish o8,
X (ty) = X(thy1) — X(tn)’
thyr —tn

and A(t,), B(tn), C(ty), D(tn), and E(t,) are calculated using(t,). The resulting linear
system forx(tn1) is solved using the iterative method BiCGStab2 [14, 27] withh) as
the initial approximation. For all numerical results which follow, the iteration is continue
until the mean square root of the residual is less thar$.10

Unlike in the structured grid case, both the initial m@P(O) and the computational
meshQ! are, in general, nonuniform. The effects of this initial nonuniformity on subseque

meshes generated by (6) or (9) are very complicated, and it is not our intention to st
them here. However, it is interesting to analyze the one-dimensional case, for which
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effects of nonuniformity can be seen more clearly, partly because the boundary effect
not complicate matters.
For this, suppose that we are given the physical and computational dofhairs, =
[0, 1], a monitor functionM, and an initial nonuniform mesf2"(0). Formally speaking,
this mesh can be regarded as the image of a uniform computational mesh under a may
X = X(&). Following the strategy discussed above, a nonuniform computational f2fesh
(its coordinate denoted l@ is defined by solving a one-dimensional version of (11), viz.
d% - -
Frci 0, £(00=0 &1 =1 (13)
(Since = ¢, the solution of (13) is the identity m@: X.) The initial adaptive mesh
Q"(0) is determined by the equidistribution principle (i.e., the one-dimensional version

(6) [19)),

d 1 = y
E(W) =0, E0 =0 =1 (14)

or equivalently,

de_

- C (15)

for suitable constar€ [19]. Sincex = £, (15) becomes

dx
or
M  dx
M 9x 17
(dx/d) dé a7

We conclude that the initial adaptive mesh can be interpreted as arising from using a unif
computational grid and equidistributing the modified monitor functibe= M /(dx/d).
From the form ofVl, we see that there is the propensity for the initial adaptive mesh to |
concentrated in the same regions as the initial n@s(lﬁ)).

To illustrate the effects of the choices of the computational domain and the initial me
we present in the following some numerical examples for which the adaptation functic
are given.

ExAMPLE 3.2. In this example, the L-shape domain from Example 3.1 is used again
study the effects that different choices of the computational dofainave on the initial
adaptive mesh2"(0) is taken to be a uniform triangulation, as shown in Fig. 2a. We choo:
the different computational domains as the convex polygons having three, four, five,
six sides and the unit circle. The mesh for e&zhobtained by solving (11) is plotted in
Figs. 2b1-b5. Note that the mapping betweemnd . is not regular at certain corner
points, and in cases (b1l), (b2), and (b5) the meshes in the computational domain are hi
irregular (the smallestangles in some elements are almost zero). Nevertheless, we expet
no difficulty in generating the adaptive meshes for a monitor function of Winslow’s type al
adaptation functioni(x) = 1/(1 + exp(100(x + y — 1/2))); moreover, the initial adaptive
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FIG. 2. Meshes are shown for Example 3.2: (a) the original mesh; (b) computational domains and tt

meshes;

%%

(c) adaptive meshes.

1

meshe£2"(0) are almost the same for these very different choice&®.(Bee Figs. 2c1-c5).
This example suggests that the adaptive mesh is relatively insensitive to the chQice of

However, the adaptive mesh generation and movement techniques are clearly not appli

if the mapping betweef® and2. actually results in degenerate elementSin

ExamPLE 3.3. The performance of the moving mesh technique is examined for t
case of a solution domain with very rough boundaries. The adaptation function is chose
u(x, t) =tanh(50(x — t)). Anunstructured grid as shown in Fig. 3aisinitially generated witt

the Delaunay mesh triangulatdriangle developed in [25]. We choose the computationa

domain as a convex polygon having the same number of boundary segmentaras
use a monitor function of Winslow’s type in (9). The resulting moving mesh is shown

Fig. 3 for various times. One can see that the generated mesh is satisfactory in the <
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FIG. 3. An adaptive mesh is plotted &= 0, 0.25, 0.5, 0.75 for Example 3.3.

that it conforms very well to the adaptation function. However, one can also see from
picture that elements near the rough boundary can sometimes become very skew. Althe
a straightforward application of the moving mesh technique does work here, for gen
nonconvex domains there is no theoretical guarantee for the existence and invertibility of
continuous and/or discrete mapping betw&grand2 generated with the mesh movement
strategy. Whe® is a nonconvex region with corners, it can be important to use smaller tin
steps when the wave front reaches corners, to use finer meshes around corners to redu
numerical errors, or to use local refinement to change the topology of the mesh to elimir
the singular elements. Application of the mesh movement strategy for general noncor
domains is certainly an area demanding further investigation.

ExamMPLE 3.4. In this example, we test the moving mesh method for the case @here
is multiconnected. The solution domain, shown in Fig. 4a, is a typical one for an airf
analysis problem. The initial mesh"(0) is again obtained by the Delaunay triangulator
with weighted area constraints. We chogse- . and2"(0) = QP! for this example. The
adaptation functionu(x, t) =tanh(50(3x — |y| —t)) is used to simulate a moving shock
wave. The moving meshes at three different times are plotted in Figs. 4b, ¢, and d. Note
the moving mesh method produces satisfactory adaptive meshes even though for this
the physical and computational domains are multiconnected. Also, observe that the in
mesh concentration around the solid surface of the airfoil is maintained by the adap
meshes, a feature anticipated in our analysis.

In summary, the unstructured mesh movement strategy developed in this section has
seen to work satisfactorily in a variety of circumstances. The numerical results indicate |
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FIG. 4. An adaptive mesh is depictedtat 0, 0.5, 1.0, 2.0 for Example 3.4.

the adaptive mesf2"(0) is relatively insensitive to the choice of the computational domair
Nevertheless, we recommend tatshould generally be chosen to be convex and to hay
the same number of boundary segment2am order to avoid introducing degenerate
elements in the computational mesh.

4. r-ADAPTIVE FEM FOR PHYSICAL PDEs

We consider now the finite element method for numerically solving time dependent PL
on moving meshes. Specifically, consider the time dependent PDE

%(t) +LU@t)=0 inQx (0, T], (18)

whereQ is an open bounded domainiR?, the solutiorlJ (t) lies in a function spackl (),
and L is a spatial differentiation operator. The system, supplemented with suitable inif
and boundary conditions, is assumed to be well-posed.

Assume that [QT] is partitioned into time levels &ty <t; < --- <ty =T and that at
time levelt, a meshQ"(t,) on £ and the numerical solution(t,) (approximatingJ (t,))
are given. In order to compute the numerical solutigty. ;) at the next time level, we
first use the moving mesh method described in the previous sections to determine ar
Q" (th+1) on Q. Recall that for the moving mesh method, the connectivit®2bft, 1) is
the same as that @2"(t,). Thus, each elemei (t,.1) of Q"(t,.,1) corresponds uniquely
to an elemenk (t,) of Q2(t,). Let Fx (t,) be the affine map frorK (t,) to K (t,1). For any
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pointX € K(t,), define

- 11—t
XX, t) = -7:K (th) (X )+ X

N+l — ne1 — tn

and fort € (tn, thy1),
K (t) = {X(X, t) | VX € K (t,)}.

Clearly, {K (t)} defines a mesk"(t) on Q. For each elemerK (t), let K be the standard
element, i.e.K is the unit square iK (t) is quadrilateral, or the unit right triangle i (t)

is triangular. Denote the affine map frdfnto K (t) by Fk ) and the corresponding approx-
imation space at timeas

S"t) = {ve HQ) | vlke o Fke € P(K) VK1) € @"1)},

whereP(K) is a given set of polynomials ok —in our case the set of linear functions.
If {¢ (%)} is a standard basis fd?(K), then{¢; (x, t)}, where for eachy, ¢; (X, t)|k ) =
bi (F,g(lt)(x)) for somei, is a basis of the spac®(t) on K (t). We have

dpj vid 0% ax]" - a>‘<_v¢_ X 9%
ot 9 T U ar] YY) Tt T PN\ G at
and

0= ax+axa§<
T ot axat’

whereVy is the gradient operator with respect to the coordifatethe standard element
andax/ax is the inverse of the Jacobian of the affine mapfrg,. Hence,

0p;  ox

PY: —_%'de)j' (19)

For anyv(t) € S"(t) having the representation

v D) =Y v (X 1),
i

it follows from (19) that

ol —Zd’” (O (x, 1) — [ vx}v(x b.

The semi-discrete finite element approximation for (18) thus involves finairgt) €
S (t) for t € (t,, th 1] such that

/ {Z '(t)¢,(x t) — [— Vx}u(x t) + Lu(x, t)}vdx =0 Vve So(t) (20)
Q2 i
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WhereSQ(t) is the subspace @&"(t) consisting of functions vanishing on the partast
where essential boundary conditions are imposed. i the set of indices corresponding
to the mesh points andy is the subset off excluding those corresponding to Dirichlet
boundary conditions, theﬁg(t) can be expressed ﬁ'(t) =sparig;(x, t) | j € Jo}, and
(20) can be written as a system of ODEs

M(t)% — F(t, u), (21)

whereu = (Uj)icy, is the unknown vectorV (t) = (m;j (1))i jes, IS the mass matrixy =
(Fi)ies, is the load vector, and

mjj (t) = /¢i (X, D@j (X, t) dx,
Q

S X _ duj . .
F =R, u)_/< LU(x, ) + {8t -Vx]u(x,t) Z pm (t)¢,(x,t)>¢. dx.

Q jeI\Jo

Except for the mesh movement portion, this procedure is simply the method of lir
approach on moving (“quasi-Lagrangian”) coordinates. With a suitably chosen time in
grator, the approximation to the solution at titge; can be obtained straightforwardly by
integrating (21). While in principle any type of time integrator can be used to solve (2.
for our numerical examples in the next section we choose a two-stage (second-order) si
diagonal implicit Runge—Kutta method (SDIRK) for its relative efficiency and favourabl
stability properties. The time step si&eis either fixed or adaptively selected with the help
of an embedding scheme (see [15] for details). The resulting nonlinear algebraic syste
iteratively solved using BiCGStab2 [14, 27] until the mean square root of the residua
less than 10°.

5. NUMERICAL RESULTS

In this section we present some numerical examples to demonstrate the performan
ther -adaptive FEM for solving time-dependent PDEs.

ExampLE 5.1. Consider the wave equation,

U U aU
ot Yax X%y

Il
o

on the unit circle with initial value
1-16((x - 3+ 3¥7), it (x= 5+ 2 <
VOGO =91-16((x+3)*+3y?). if (x+3)°+ 3% < &
0, elsewhere

Note that there are no boundary conditions needed for this problem since the boun
is in a characteristic direction of the PDE. The solution possesses a twin peak (of fi
shape) rotating counterclockwise around the origin. A linear finite element discretizat
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FIG.5. A moving mesh is shown &t=0, = /2, =, 37 /2 for the wave equation.

based upon moving meshes as described in Section 4 is applied. The initial mesh is obte
from a quasi-uniform triangulation with 1536 elements. A fixed time step&ize0.005

the monitor funct

is calculated from (3) withh, =A; (Winslow's type) using the numerical solution, and

is used for the integration of the physical PDE. For mesh movement

the time smoothing parameteris taken to be 10'. The grid points on the boundary

are kept fixed. The resulting mesh is showed in Fig. 5 for various times. For compari

purposes, we solve this problem using both fixed and moving meshes. The error with
moving mesh is found to be about2 of that with the fixed mesh, so the improvement

using moving meshes is not particularly significant for this example. This is because
solution is relatively smooth and high accuracy can be obtained on a relatively coz

uniform mesh. Nevertheless, the problem is a serious test for mesh movement strate

Indeed, many existing moving mesh techniques produce meshes with points stickin

the rotating peaks, causing the mesh to become increasingly skew until the compute
eventually breaks down [2, 9, 30]. From Fig. 5, it is clear that our moving mesh method |

no such difficulty, and the mesh adapts extremely well to the solution without produci

skew elements.

ExampLE 5.2. Our second example is Burgers’ equation

(22)

U

ot

av2U +UUyx + UU,

(0,1) x (0, 1). The Dirichlet boundary and initial conditions

defined on the domaif
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FIG. 6. ThelL! errors in time of the linear finite element solutions for Example 5.2 are obtained with fixe
and moving meshes of various numbers of elements.

are chosen such that the exact solution to the underlying probléhixisy, t) =1/(1 +
exp((x + Yy — t)/(2a)). We test our moving finite element method for the case0.005.
The smallem is, the more convection dominates and the higher the concentration of me
points required around the wave front.

The monitor function and the time smoothing parameter are defined in the same way :
Example 5.1. Afixed time step size 0.001 is used for the time integration of the ODE sys
(21). To examine the accuracy of the finite element solver, we first solve (22) using fix
uniform meshes with 512, 2048, and 8192 triangular elements (i.e., we successively re
the element diameter by afactor%)f Thel ! errors are plotted in Fig. 6. As expected for the
linear FEM, the error drops quadratically as the element diameter decreases. We then u
finite element solver (for the same parameter settings) on moving meshes of 512 and :
triangular elements. For the 2048 element case, the obtained moving meshis plottedin F
for four time levels. For the same number of elements Ltherror of the finite element
solution with a moving mesh is abouyt3.of that with a fixed mesh (see Fig. 6). Furthermore
without resorting to any upwinding treatment, the oscillations in front of and behind t
steep solution front, which are typical for the finite element discretization of convecti
dominated problems, are essentially eliminated through the use of the moving meshes

ExAMPLE 5.3. The moving finite element method is now applied to a few more practic
problems, for which the analytical solutions are not available. The first of these proble
describes the buoyancy-driven horizontal spreading of heat and chemical species thr
a fluid-saturated porous medium. Consider the two-dimensional porous medium reg
sketched in Fig. 8. The boundary of the region is assumed to be adiabatic and imperme
The fluid which saturates the porous medium is initially of different degrees of temperat
and concentration of a certain constituent. At the beginning, the warm fluid on the left s
of the domain has a less pronounced vertical gradient of hydrostatic pressure than the
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FIG. 7. A typical moving mesh of 2048 triangular elements for Example 5.2 is shovin=415, 0.75,
1.0,1.25

fluid on the right side. This horizontal difference of pressure will start to push the cold flu
to the left side at the bottom and the warm fluid to the right side at the top. This keeps
fluid convecting until the cold fluid rests under the warm one. Meanwhile, the diffusic
effect will gradually smooth out the temperature and concentration differences betweer
initially cold and warm fluids. If the Rayleigh number is large enough, a thin layer of larc
variation of temperature and concentration will keep existing until the warm fluid settl
completely on top of the cold one and eventually the temperature and concentration bec
uniform in the whole fluid.

Using Darcy’s law and the homogeneous porous medium model, the conservations
mass, momentum, energy, and the constituent give rise to the system [24]:

_v2y — Rral 2 30)

Vey = Ra( 3 +N ax )’
T LIV _ gy, (23)
ot a(X,Y)

$oC  3C.y¥) ivzc,

odt  axy Le

whereys is the stream function of the flow, is the temperature is the concentration of
the constituent, Ra is the Darcy-modified Rayleigh humNeis the buoyancy ratio, Le is
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FIG. 8. The contour plot of the computed temperatlirévhere the white represents 1 and black represent:
0) and the corresponding moving mesh are depicted at various times for Example 5.3.

the Lewis numbegp is the porosity ratiog is the heat capacity ratio, andf, g)/9(X, y) =
(0f/0x)(9g/ay) — (af /9y)(dg/ax) for two arbitrary functionsf andg. The initial and

boundary conditions are

Yli—o = 0,
(24)

NI=

1, forx <
0, forx>

NI

3

Tlt—o = Clt—0 = {
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and
Ylag =0, fort > 0,
aT aC (25)
— = — =0, fort >0,
on |y, an |yq

wheren denotes the unit outward normal to the bounda®y

We simulate this phenomenon for the case of a large Rayleigh number] B@0. Other
parameters in (23) ald =0, Le=1, and¢ /o = 1. The solution domain is initially parti-
tioned using the Delaunay triangulafigiangleinto 3833 elements. For mesh movement we
use the monitor functio® = /1 + |VT|2] and the time smoothing parametes 102,
The ODE system resulting from the linear finite element discretization of the PDEs is
tegrated using a dynamical time step size selection procedure with error tolerarice 1
The results are shown in Fig. 8. Itis clear that the mesh adapts well to the temperature
follows successfully the motion of the thin layer of large temperature and concentrat
variation. While the variation in temperature and concentration is gradually smoothed
by diffusion, the mesh is also becoming more uniform.

ExamMPLE 5.4. Our next example is a combustion problem considered in [17, 23]. Tl
mathematical model is a system of coupled nonlinear reaction—diffusion equations

ou V2y = _Eu 11T
ot 8 ’
T 1 Iz (26)
O _Loer o R gaum
ot Le SLe ’

whereu and T represent the dimensionless concentration and temperature of a chem
which is undertaking a one-step reaction. We considedtkbape solution domain shown
in Fig. 9. The initial and boundary conditions are

Ut=o=Tlt=o =1, ing, 27)
Ulso = Tlha =1, fort >0,

and the physical parameters are set to be-I09, « = 1, § = 20, andR=5.

The solution of this problem features a temperature that initially increases slowly frc
unity, forming a hot spot at the center of the right rectangular region, and then quic
jumping to approximately % « there. A sharp flame front is developed and propagate
towards the boundary of the right rectangular region. Shortly after the flame front pas
through the bridge in the middle 6f and enters into the left rectangular region, another hc
spot is formed in the left region. Then the left flame front expands and joins the right c
to move to the boundary @2, where it eventually settles due to the boundary conditions.

We start with an initial mesh consisting of 3293 quasi-uniform triangular elements. T
monitor functionG is defined ag/1+ %|VT|2I , to give higher mesh concentration in the
flame front regions. The scaling factéris used to avoid excessive mesh concentratiol
in regions of largeV T |. This is equivalent to the use of Winslow’s monitor function in (3)
with a scaled adaptation functigf/~/2) T. The time-smoothing parameteand the time
integrator for the physical ODE system are chosen as in the previous example. Figur
and 10 show the contour plot of the computed temperature and the moving mesh at diffe
time levels. Once again, the moving mesh captures the solution features very well.
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FIG. 9. The contour plot of the temperatufe(where white represents 2.2 and black represents 1) and th
moving mesh for Example 5.4 are shown at various times.

ExamPLE 5.5. Finally, we apply the moving finite element method to the problem c
fluid flow past a cylinder.

Lety andw be the stream function and vorticity, respectively. The motion of the incon
pressible fluid is governed by the PDEs

o Mo 2o, o
ot (X, y) Re (28)

-V = w,




240 CAO, HUANG, AND RUSSELL

(a.4) T{e=1.2156) | (.4 Mesh(t=1.2156)

(a.5) T{tml.2275)

(b.5) Mesh(t=l.2275)

o)
A

LV
SRS
e

_.

s
}"ﬁ:
A
T

W
W
\/

N
R
X
Il
/]

17
N

A
%,

7
i
¥

o

]
H

N
N,
g

AR

o0
)
b
¥

Y

{a.6) T{E=1.2321) ' (.6} Mesh(t=1.2321)

?

(a.7) T(t=2.7888) (.7 Maesh{t=2

FIG. 10. Continued from Fig. 9.

with the Reynolds number being defined as-R&J,a/v, whereU,, is the speed of free
flow in the far field,a is the radius of the cylinder, andis the viscosity.

For numerical computation, we take= 1 andU,, = 1 and truncate the infinite domain
outside the cylinder at a circle with rading, = 20. On the surface of the cylinder, the
nonslip boundary condition is applied, i.e.,

v

=0, — =0
v an

At the outer boundary =r ., we choose the Dirichlet conditions

Y=Yy, w=0.
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The weak formulation of (28) is used to form the finite element discretization. Mo
precisely, a weak solutiofw, ) € S, x Sy is sought to satisfy

do g, v\ 2 B
(m’¢) - (w, 0.y) ) + 2o (V. V§) =0 Vg € Wy,

VY, Vé) — (w,¢) =0 Vo e W,,

(29)

whereW,,, W,,, S,, S, are suitable functional spaces (see [13] for details). Since our ma
concern in the present study is the steady state solution, a simple implicit Euler met
is used for the time discretization of (29), with the nonlinear term approximated ser
implicitly by (w(thi1), 9(¢, ¥ (tn))/3(X, ¥)). The resulting linear system of equations at
each time level is then solved by the BiCGStab2 method.

For mesh adaptation, there are a number of possible choices for the monitor funct
depending upon where the mesh concentration is desired. We have used two diffe
choices. One is based upon vorticity, i®.= /1 + |w|*| . This choice gives higher mesh
concentration in regions where the vorticity is large (see [6]). Another choice is bas
upon the stream function, viZg = \/1 +1/(e + [¥ ) (1 + e=X)| with € > 0. This choice
gives larger eigenvalues @& around the stream ling = 0 behind the cylinder, and thus
a high mesh concentration there for smalWe choose: =0.01, although we have not
had sufficient experience to comment on what range of valuesaajuld be suitable in
general. The motivation for using the second type of monitor function is that for the curre
flow problem the regions enclosed by certain streamlines contain the most interesting
structures of the flow which require higher resolution. This choice has advantages if th
fine structures are of primary concern.

The adaptive meshes and the contour plots of the vorticity and stream functions obtal
with the corresponding choices of the monitor function are shown in Fig. 11 for the c:
Re=20. Since the adaptive meshes are fairly fine around the cylinder in both cases,
solution profiles obtained are nearly indistinguishable. However, the meshes resulting f
the two monitor functions do achieve our respective goals of having higher concentra
around the regions of large vorticity or aroutid= 0. If a primary concern were the fine
flow structures past the cylinder, then the better resolution from the second type of mor
function would be desirable. The standard benchmarking quantities for this problem are
lift and drag coefficients. Our results for these coefficients agree well with those repor
in [12, 20] for Reynolds numbers in the range Rd5, for which the solution approaches
a steady state and the comparison is thus meaningful.

6. CONCLUSIONS

Inthe previous sections we have presentedadaptive finite element method for solving
time-dependent PDEs. The distinguishing features of the method are that the underl
mesh is unstructured and that the mesh movement for the FEM is done using MMPI
developed in [17]. The first makes the method very general—it can be applied to m:
practical problems with complicated domains. The second feature facilitates smooth
evolution in time, which is needed to preserve stability of the method.

A key to the use of MMPDEs for unstructured mesh movement is to initially define tt
computational domaif2. and to compute the computational megh Unlike in the case
of structured mesh movement, andQ2f! cannot now be chosen simply to be a square an
a uniform rectangular mesh, respectively. Instead, they must be defined and compute
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Y

|
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FIG. 11. The adaptive mesh, vorticity, and stream lines for Example 5.5 wite=R@ The pictures
on the left are results obtained with =+/1+ |w|*l and those on the right side obtained with=

V/1+1/(001+ [y )1+ el

conjunction with2 and the given mesf2"(0). A detailed discussion of this issue is givenin
Section 3, as well as some illustrative numerical results. It is shown that the resulting ini
adaptive mesk"(0) is insensitive to the choice of the computational domain. Nevertheles
we recommend tha®; should generally be chosen to be convex and to have the sal
number of boundary segments @sn order to avoid introducing degenerate elements i
the computational mesh. Furthermore, analysis and numerical results sh& tBahas
the propensity to concentrate the points in the same regions as the initiahesh

The FEM discretization of physical PDEs has some special features caused by n
movement on an unstructured grid, and these are discussed in Section 4. While the
merical examples which follow show the versatility of our moving FEM, there are sevel
limitations, perhaps the most significant being that there is currently not the capabi
to do error estimation nor to add or remove grid points (\izeefinement). As a result,
if a solution has several distinct qualitative features of interest (as in the last exam
where mesh concentration can be desired around the front of the cylinder and where vc



AN r-ADAPTIVE FINITE ELEMENT METHOD 243

shedding occurs in the back), then selecting a monitor function which properly balan
these two concerns is very difficult. Nevertheless, thimethod should ideally comple-
ment the currently populdr-p FEM approach, and one of our next goals is to improve th
efficiency of this latter approach by providing it with the moving mesh capability.
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